A map of the percentage change in the amount of moderate turbulence by the period 2050-2080 at 39,000 feet in altitude in Autumn (September, October, November) in North America.
Credit: Paul Williams
Flights all around the world could be encountering lots more turbulence in the future, according to the first ever global projections of in-flight bumpiness.
Flights to the most popular international destinations are projected to experience the largest increases, with severe turbulence at a typical cruising altitude of 39,000 feet becoming up to two or three times as common throughout the year over the North Atlantic (180 percent more common), Europe (160 percent more common), North America (110 percent more common), the North Pacific (90 percent more common), and Asia (60 percent more common).
“Air turbulence is increasing across the globe, in all seasons, and at multiple cruising altitudes. This problem is only going to worsen as the climate continues to change,” said Paul Williams, Professor of Atmospheric Science at the University of Reading in the United Kingdom and lead author of the new study. “Our study highlights the need to develop improved turbulence forecasts, which could reduce the risk of injuries to passengers and lower the cost of turbulence to airlines.”
The study also makes the first ever turbulence projections for the Southern Hemisphere and the tropical regions of the planet. The amount of airspace containing severe turbulence is calculated to increase over South America (60 percent increase), Australia (50 percent increase), and Africa (50 percent increase).
Find your dream job in the space industry. Check our Space Job Board »
“While turbulence does not usually pose a major danger to flights, it is responsible for hundreds of passenger injuries every year,” said Luke Storer, a researcher at the University of Reading and co-author of the new study. “It is also by far the most common cause of serious injuries to flight attendants. Turbulence is thought to cost United States air carriers up to $200 million annually.”
The new research analyzes supercomputer simulations of the future atmosphere with a focus on clear-air turbulence, which is particularly hazardous because it is invisible. The expected turbulence increases are a consequence of global temperature changes, which are strengthening wind instabilities at high altitudes in the jet streams and making pockets of rough air stronger and more frequent.
“The study is another example of how the impacts of climate change can be felt through the circulation of the atmosphere, not just through increases in surface temperature itself,” said Manoj Joshi, a Senior Lecturer in Climate Dynamics at the University of East Anglia in the United Kingdom and co-author of the new study.
Story Source: Materials provided byUniversity of Chicago Original written by Whitney Clavin.Note: Content may be edited for style and length.
Journal Reference:
Luke N. Storer, Paul D. Williams, Manoj M. Joshi. Global Response of Clear-Air Turbulence to Climate Change. Geophysical Research Letters, 2017; DOI: 10.1002/2017GL074618