Three Chinese fir trees on a nature reserve in Southeastern China are the last of their kind. As their existence is threatened by human disturbance and climate change, researchers are hurrying to learn everything they can about the tree—which might inspire new and more effective ways to treat various cancers. Chemists in China were initially

Electronegativity is one of the most well-known models for explaining why chemical reactions occur. Now, Martin Rahm from Chalmers University of Technology, Sweden, has redefined the concept with a new, more comprehensive scale. His work, undertaken with colleagues including a Nobel Prize-winner, has been published in the Journal of the American Chemical Society. The theory

A KAIST research team completed a metabolic map that charts all available strategies and pathways of chemical reactions that lead to the production of various industrial bio-based chemicals. The team was led by Distinguished Professor Sang Yup Lee, who has produced high-quality metabolic engineering and systems engineering research for decades, and made the hallmark chemicals

A new research project uses the Canadian Light Source to help researchers understand the protein responsible for regulating heartbeats. Errors in this crucial protein’s structure can lead to potentially deadly arrhythmias, and understanding its structure should help researchers develop treatments. This protein, calmodulin (CaM), regulates the signals that cause the heart to contract and relax

After almost four decades, Leiden and Eindhoven chemists have resolved the discussion about the correct model regarding the simplest chemical reaction in heterogeneous catalysis, which is essential for fuel cells. Using a unique curved platinum surface, Ludo Juurlink and Ph.D. candidate Richard van Lent from Leiden and Michael Gleeson from DIFFER showed which model correctly

A chemical reaction pathway central to plant biology have been adapted to form the backbone of a new process that converts water into hydrogen fuel using energy from the sun. In a recent study from the U.S. Department of Energy’s (DOE) Argonne National Laboratory, scientists have combined two membrane-bound protein complexes to perform a complete

Lithium-air batteries are poised to become the next revolutionary replacement for currently used lithium-ion batteries that power electric vehicles, cell phones and computers. Lithium-air batteries, which currently are still in the experimental stages of development, can store 10 times more energy than lithium-ion batteries, and they are much lighter. That said, lithium-air batteries could be

With the help of sponges inserted in the bloodstream to absorb excess drugs, doctors are hoping to prevent the dangerous side effects of toxic chemotherapy agents or even deliver higher doses to knock back tumors, like liver cancer, that don’t respond to more benign treatments. The “drug sponge” is an absorbent polymer coating a cylinder

High-energy X-ray beams and a clever experimental setup allowed researchers to watch a high-pressure, high-temperature chemical reaction to determine for the first time what controls formation of two different nanoscale crystalline structures in the metal cobalt. The technique allowed continuous study of cobalt nanoparticles as they grew from clusters including tens of atoms to crystals

Materials are widely used to help heal wounds: Collagen sponges help treat burns and pressure sores, and scaffold-like implants are used to repair bones. However, the process of tissue repair changes over time, so scientists are developing biomaterials that interact with tissues as healing takes place. Now, Dr. Ben Almquist and his team at Imperial

Follow Us: