Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds. With quantum particles, information can be stored and manipulated – this is the basis of many very promising technologies, such as extremely sensitive quantum sensors, quantum

It is one of the most astonishing results of physics: when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, will return almost exactly to their starting positions after some time. This “Poincaré Recurrence Theorem” is the

In the real world, your past uniquely determines your future. If a physicist knows how the universe starts out, she can calculate its future for all time and all space. But a UC Berkeley mathematician has found some types of black holes in which this law breaks down. If someone were to venture into one of these

Although mobile devices such as tablets and smartphones let us communicate, work and access information wirelessly, their batteries must still be charged by plugging them in to an outlet. But engineers at the University of Washington have for the first time developed a method to safely charge a smartphone wirelessly using a laser. As the

Australian researchers from the ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) have developed a 3D printable ‘clip-on’ that can turn any smartphone into a fully functional microscope. Reported in the research journal Scientific Reports, the smartphone microscope is powerful enough to visualise specimens as small as 1/200th of a millimetre, including microscopic organisms, animal and

A team led by engineers at the University of California San Diego has used data mining and computational tools to discover a new phosphor material for white LEDs that is inexpensive and easy to make. Researchers built prototype white LED light bulbs using the new phosphor. The prototypes exhibited better color quality than many commercial

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest tools: a pencil, photocopy paper, and conductive paint. These are sufficient to convert a temperature difference into electricity via the thermoelectric effect, which has now been demonstrated by a team at

With their insensitivity to decoherence, Majorana particles could become stable building blocks of quantum computers. The problem is that they only occur under very special circumstances. Now, researchers at Chalmers University of Technology have succeeded in manufacturing a component that is able to host the sought-after particles. Researchers throughout the world are struggling to build

A team of scientists has detected a hidden state of electronic order in a layered material containing lanthanum, barium, copper, and oxygen (LBCO). When cooled to a certain temperature and with certain concentrations of barium, LBCO is known to conduct electricity without resistance, but now there is evidence that a superconducting state actually occurs above

Try a quick experiment: Take two flashlights into a dark room and shine them so that their light beams cross. Notice anything peculiar? The rather anticlimactic answer is, probably not. That’s because the individual photons that make up light do not interact. Instead, they simply pass each other by, like indifferent spirits in the night.

Follow Us:

Facebooktwitterrss