A new ultrathin elastic display that fits snugly on the skin can show the moving waveform of an electrocardiogram recorded by a breathable, on-skin electrode sensor. Combined with a wireless communication module, this integrated biomedical sensor system, called “skin electronics,” can transmit biometric data to the cloud. This latest research by a Japanese academic-industrial collaboration,

Searching for a power outlet may soon become a thing of the past. Instead, devices will receive electricity from a small metallic tab that, when attached to the body, is capable of generating electricity from bending a finger and other simple movements. That’s the idea behind a collaborative research project led by University at Buffalo

Operation of modern-day technology requires an ever-increasing use of broadband frequency signals. This, in turn, has grown the demand for reliable, efficient methods of signal transmission that prevent interference and are more efficient in their use of the scarcely available frequency spectrum. These requirements are constrained, however, by reciprocity–a law of physics that forces the

Accurately measuring electric fields is important in a variety of applications, such as weather forecasting, process control on industrial machinery, or ensuring the safety of people working on high-voltage power lines. Yet from a technological perspective, this is no easy task. In a break from the design principle that has been followed by all other

In an advance that could push cheap, ubiquitous solar power closer to reality, University of Michigan researchers have found a way to coax electrons to travel much further than was previously thought possible in the materials often used for organic solar cells and other organic semiconductors. “For years, people had treated the poor conductivity of

Engineers worldwide have been developing alternative ways to provide greater memory storage capacity on even smaller computer chips. Previous research into two-dimensional atomic sheets for memory storage has failed to uncover their potential — until now. A team of electrical engineers at The University of Texas at Austin, in collaboration with Peking University scientists, has

Researchers at the Laboratory of Organic Electronics, Linköping University, have developed the world’s first complementary electrochemical logic circuits that can function stably for long periods in water. This is a highly significant breakthrough in the development of bioelectronics. The first printable organic electrochemical transistors were presented by researchers at LiU as early as 2002, and

Follow Us:

Facebooktwitterrss